AS Physics - Experiment Questions for Unit 2 Mark Scheme

1. Polarisation

The (wave) oscillations (1) occur only in one plane (1)
[OR shown with a suitable diagram]
How to measure angle of rotation
Any four points from:

- Polaroid filter at one/both ends
- with no sugar solution, crossed Polaroids (top and bottom of tube) block out light
- sugar solution introduced between Polaroids
- one Polaroid rotated to give new dark view
- difference in angle between two positions read from scale (1) (1) (1) (1) Max 4

Graph

Points plotted correctly [-1 for each incorrect; minimum mark 0] (1) (1)
Good best fit line to enable concentration at 38° to be found (1)
Concentration
$0.57(\pm 0.01) \mathrm{kg} \mathrm{l}^{-1}$
1
The terms viscous and brittle
Viscous: a high resistance to flow (1)
Brittle: breaks/cracks/snaps without plastic deformation (when a load is applied) (1) 2
2. Explanation of standing waves

Waves reflected (at the end) (1)
Superposition/interference of waves travelling in opposite directions (1)
Where in phase, constructive interference/superposition
OR where antiphase, destructive interference/superposition
OR causes points of constructive and destructive
interference/superposition [Do not penalise here if node/antinode mixed up] (1)
Mark node and antinode
Both marked correctly on diagram (1) 1
Label wavelength
Wavelength shown and labelled correctly on diagram (1) 1

Explain appearance of string

Any two from:

- light flashes twice during each oscillation / strobe frequency twice that of string [accept light or strobe]
- \quad string seen twice during a cycle
- idea of persistence of vision (2)

Calculate speed of waves

Use of $v=\sqrt{ } T / \mu$ (1)
$\square \quad$ Correct answer $\left[57 \mathrm{~m} \mathrm{~s}^{-1}\right]$ (1)
Example of calculation:

$$
\begin{aligned}
& v=\sqrt{ } T / \mu \\
& =\sqrt{ }\left(1.96 \mathrm{~N} / 6.0 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1}\right) \\
& =57.2 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

3. Area of wire:

Use of $A=\pi r^{2}(\mathbf{1})$
Correct answer $\left[1.9 \times 10^{-7}\left(\mathrm{~m}^{2}\right)\right.$. Allow 1.9×10^{-7} and $\left.2.0 \times 10^{-7}\left(\mathrm{~m}^{2}\right)\right](\mathbf{1})$
[No u.e.]

$$
\begin{aligned}
& \text { e.g. } \\
& A=\pi r^{2}=\pi \times\left(2.5 \times 10^{-4}\right)^{2} \\
& =1.96 \times 10^{-7} \mathrm{~m}^{2}
\end{aligned}
$$

Table + graph:

Length / Area $/ \times 10^{6} \mathrm{~m}^{-1}$
0.0
0.5
1.0
1.5
2.0
2.5
3.1
3.6
$4.0-4.1$

(1)

First 2 points plotted correctly to within 1 mm (1)
Rest of points in straight line with origin by eye (1)
Resistivity calculation:
Drawn through the origin, ignoring first 2 points (1)
Recall $\rho=R /(L / A)$ [in any form] (1)
Large triangle drawn on graph OR accept the use of a pair of values (1) read from the line
[$x>3 \times 10^{-6} \mathrm{~m}^{-1}$)is required in both cases]
[x-axis allowed as bottom of triangle]
Correct answer $\left.\left[1.2 \times 10^{-7} \Omega \mathrm{~m}\right)\right]$ (1)
[allow $1.1-1.3 \times 10^{-7}(\Omega \mathrm{~m})$] [no u.e.]
e.g.
$0.4 / 3.4 \times 10^{6}=1.2 \times 10^{-7} \Omega \mathrm{~m}$
Anomalous results:

Any two of the following:

- Higher current/lower resistance for shorter lengths/at these points
- At shorter lengths/at these points wire gets hotter
- Non-uniform area/diameter
- Cable / contact resistance
- Sensitivity of meters
- Effect on resistance of any of the above (2)
$\max 2$
[11]

4. Device

Potential divider or potentiometer 1
Voltmeter reading
A 9.0 V (1)
B 0 V (1)
2
Diagram
Label X two thirds of the way down from A [Allow e.c.f.] 1

Explanation

Any 3 points from the following:

- lamp in parallel with lowest $1 / 3$ of $A B$
- when resistors in parallel, resistance decreases
- p.d. across lamp reduced to below 3 V
- current divides
- no longer enough current to light lamp 3

5. Type of scale

Logarithmic / powers of 10 (1)
Reason: e.g. values of resistivity cover a very large range or stretches out low values / so values fit on the graph (1)

2
Resistor
(i) $A=\pi r^{2}=\pi \times\left(4.0 \times 10^{-4}\right)^{2} \mathbf{(1)}$
$=5.03 \times 10^{-7} \mathrm{~m}^{2}$ (no u.e) (1)
2
(ii) Recall of $R=\rho l / A(1)$

Length $l=R A / \rho$
$=0.12 \times 5.0 \times 10^{-7} / 1.8 \times 10^{-8}$ [substitutions]
$=3.3 \mathrm{~m}(\mathbf{1})$

Advantage of using iron wire of same diameter
Shorter piece of wire needed (if iron chosen) (1) 1
[8]
6. Explain zeroing of meter

No resistance when leads touched together/short circuit/calibration for
zero error (1)
Show that resistance is about 70Ω
$R=V \div I(\mathbf{1})$
$=0.54 \mathrm{~V} \div 0.0081 \mathrm{~A}$
$=67 \Omega$ [no ue] (1)
2
Explain section from passage
Other currents/voltages/resistances present (1)
change in current changes reading for resistance (1) 2
Explain changes in meter reading with temperature increase
Increased lattice vibrations/vibration of atoms/molecules (1)
scattering flowing electrons/more collisions (1)
increased resistance/increase meter reading (1) 3

AS Physics - Experiment Questions for Unit 2 Part 1 Mark Scheme

7. Description:

Either	Or
Two connected dippers just	Dipping beam or single source (1)
touching/above the water	reaches two slits

Vibrated electrically (1)
Level tank/shallow water/sloping sides (1)

Either	Or
Illuminate	Use stroboscope (1)
project on to screen	to freeze the pattern (1)

Max 5
Diagram:
(i) Correct line A - centre line (1)
(ii) Correct line B (above or below A) (1)
(iii) Correct line C (between A and B) (1)
both B and C correct (1)

4
If only the separation of the sources were increased, the angle between lines A and B would decrease
If only the wavelength of the waves were increased, the angle between lines A and B would increase (1)
If only the depth of the water in the ripple tank were increased, the angle between lines A and B would increase (1)

3
[Total 12 marks]
8. (a) (i) Centre line with arrow down

More lines on either side

Either showing bulges at edges
(ii) $E=6.0 \mathrm{~V} \div 0.15 \mathrm{~m}$
$=40 \mathrm{~V} \mathrm{~m}^{-1}\left[0.40 \mathrm{~V} \mathrm{~cm}^{-1}\right]$ OR $40 \mathrm{~N} \mathrm{C}^{-1}$
[e.c.f. $\div 0.075 \mathrm{~m} / 7.5 \mathrm{~cm}$]
(iii) Centre line horizontal

Two more lines (accept horizontal)
OR showing correct curvature/perpendicular to field lines

(b) (i) $\quad V_{\mathrm{X}}=3.0 \mathrm{~V} / 3 \mathrm{~V}$
because potential at Y is $3.0 \mathrm{~V} / 3 \mathrm{~V}$
so p.d. across mA is zero OR mA is connected to points at the same potential [an independent mark]
(ii) Either

Any reference to Y/change the resistors/change one of the
resistors/use a rheostat
Or
V for mA move probe over paper
(1)

Locate points where mA reads zero, add 3 V to V OR move Y to 0 V
$\begin{aligned} \text { (c) } & \text { (Use of) } \mathrm{R}=\rho \mathrm{l} / \mathrm{A} \\ & \text { Substitute } l=x \text { and } A=x t \\ \text { (ii) } & \mathrm{R}=\rho / \mathrm{t} \Rightarrow \rho=\mathrm{Rt} \\ & \rho=(1000 \Omega)\left(0.14 \times 10^{-3} \mathrm{~m}\right)=0.14 \Omega \mathrm{~m} \quad[\text { no e.c.f.] }\end{aligned}$
9. Definition of e.m.f. of a cell

Work/energy (conversion) per unit charge 1
for the whole circuit / refer to total (energy) 1
OR
Work/energy per unit charge 1
converted from chemical to electrical (energy) 1
OR
$E=\frac{W}{Q}$ for whole circuit
All symbols defined 1
OR
$E=\frac{P}{I}$ for whole circuit
All symbols defined 1
[Terminal p.d. when no current drawn scores 1 mark only]

Circuit diagram

R $\quad 1$
R (can be variable) 1
A in series 1
A and V correct 1
V as shown
Or across R + A
Or across battery
[2 ${ }^{\text {nd }}$ mark is consequent on R (fixed, variable) or lamp]
Sketch graph

Graph correctly drawn with axes appropriately labelled and consistent with circuit drawn

Intercept on R axes Gradient $\equiv(-) r$ [Gradient mark consequent
$\equiv(-) r$ on graph mark]
[Gradient may be indicated on graph]
10. Number of electrons
$\left(-64 \times 10^{-9} \mathrm{C}\right) /\left(-1.6 \times 10^{-19} \mathrm{C}\right)=4.0 \times 10^{11}$ electrons
Use of $n=Q / e(1)$
Seeing $1.6 \times 10^{-19} \mathrm{C}(\mathbf{1})$
Answer of 4.0×10^{11} (electrons) (1)
[Use of a unit is a ue]
[-ve answer: 2/3]

Rate of flow

$\left(6.4 \times 10^{-8} \mathrm{C}\right) / 3.8 \mathrm{~s}=16.8 / 17\left[\mathrm{nC} \mathrm{s}^{-1}\right]$ OR $16.8 / 17 \times 10^{-9}\left[\mathrm{C} \mathrm{s}^{-1}\right]$
(6.4) / 3.8 s i.e. use of $I=Q / t[$ Ignore powers of 10] (1)

Correct answer [No e.c.f.] [1.7 or 1.68×10^{-8} or 1.6×10^{-8}] (1) 2
Unit
Amp(ere)/A (1) 1

